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There is an increasing demand for optically pure enantiomers in Supported liquid membrane
(Organic phase)

the chemical industry Organic acids and amino acids represent a
large portion of this market, but for these useful organic compounds,
only one enantiomer is known to be normally biologically active.
Many researchers have attempted the separation of optically active
compound€.Some enzymes, such as lipase and protease, catalyze  (s)-tsomer
highly enantioselective hydrolysis or esterification of drugs and EtOH
amino acids. By employing the enantioselectivity of these enzymes,

optical resolutions of a number of racemic mixtures have been (R)-somer
reportec® These studies demonstrated the selective production of
optically pure compounds from racemic mixtures; however, this
enzymatic technique requires further processing (crystallization,
solvent extraction, etc.) to separate the target enantio-derivative from % : Surfactant-enzyme complex for enantioselective esterification catalyst
another enantiomer.

Supported liquid membranes (SLMs), in which the organic liquid
is entrapped in a porous membrane, have been widely studied as ajgure 1. Concept of enantioselective separation of racemic mixtures
selective separation technigtidpplication of this technique has,  through the SLM encapsulating the surfactaszyme complex.
however, been limited mainly to the separation of metal ions and
amines to utilize the crown ethers. Rethwisch et al. and we the (§-isomer is selectively transported to the receiving phase
previously demonstrated that lipase-catalyzed reactions (esterifi- through the SLM, based on the enantioselectivity of the enzymes.
cation and hydrolysis) drove highly selective separation of organic ~ The SLM encapsulating the surfactanzyme complekwas
acids through the bulk liquid membrane and SLM, in which the Prepared by immersing a hydrophobic poly(propylene) film (Cel-
selectivity of the organic acids separation was based on the substrat@ard 2500; the thickness of the film was 28, and the maximum
specificity of the lipase.In the previous system, the transport POré size was 0.2< 0.05 um) into isooctane containing the
efficiency for a targeted organic acid and the enantioselectivity were Surfactant-enzyme complex. Enantioselective transport experiments
not satisfactory; we presumed that the low transport efficiency and through the SLM were performed at 3T using a pair of glass

the low enantioselectivity were due to the low esterification activity C€llS (€ach cell had a volume of 55 mLdaa 5 cn# cross-section).
of native lipase deposited in the aqueous phase The SLM encapsulating the surfactaiginzyme complex separated

To date, several research groups, along with ours, have demon-LhiftWO i'qg%ous pthe_ls_es. I(;]e I\(Zed pha_se cEnflsIed 0:; Mt(I;IIvallne
strated that a surfactanenzyme complex, which was soluble in uffer (pH 6.3) containing 10 mM racemic subsrate and ethanol.

. : e .. The receiving phase consisted of Mcllvaine buffer (pH 6.3)
organic solvents, effectively catalyzed esterification reaction in containing hydrolysis biocatalyst. The concentrationsSf énd
organic medi&.In the present study, we developed a novel SLM g hydroly yst

: } S (R)-isomer of substrates in the feed and receiving phase were
encapsulating the surfactarenzyme complex in the liquid mem- determined by HPLC analysis
brane phase and succeeded in an efficient and highly enantiose- Figure 2 depicts the enantio.selective transportyfifuprofen

lective separation for the optically active compoungsilpuprofen through the SLM encapsulating surfactalipase complex. The

and-L-phenyIa.Ianme from the|r. racemic mixtures. _ _surfactant-lipase CRL (lipase fron€andida rugospcomplex was
Figure 1 gives a schematic diagram of the enantioselective g,.onqjated in the SLM, and native lipase PPL (lipase from porcine
separation system for the racemic mixtures through the SLM o creas) was dissolved in the receiving phase (see Figure 2 caption
encapsulating the surfactargnzyme complex. The surfactant  tor more detail). The -ibuprofen concentration in the receiving
enzyme complex can be solubilized in the thin organic membrane phase increased with time, with that in the feed phase correspond-
and effectively catalyzes the esterification reaction in the thin film. ingly decreasing. In contrast, th&)ibuprofen concentration in
The surfactantenzyme complex is good at catalyzing enantiose- the receiving phase did not notably increase, while that in the feed
lective esterification in the liquid membrane phase, but another phase did not decrease. A control experiment performed without
enzyme is used as an ester hydrolysis catalyst in the receiving phasethe lipases resulted in no ibuprofen transport through the SLM,
Therefore, theQ-isomer is selectively esterified by the surfactant  because ibuprofen was insoluble in isooctane, indicating that the
enzyme complex at interface 1 in the SLM phase, and the resulting lipase-catalyzed reactions drove the transport ®filfuprofen
ethyl ester of §-isomer dissolves into the organic phase of the through the SLM, as shown in Figure 1. A high enantiomeric excess
SLM and diffuses across the SLM. At interface 2 in the receiving (ee= 91 (%)) value for §-ibuprofen was obtained at the end of
phase, another enzyme catalyzes the ester hydrolysis to producehe operation (48 h). These results indicate that the enantioselectivity
the initial (S)-isomer and ethanol, which are water-soluble. Thus, of the lipases induced the difference between the transport behavior
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Figure 2. Lipase-facilitated transport of§l-ibuprofen through the SLM. Figure 3. a-Chymotrypsin-facilitated transport ofphenylalanine through

(®) (9-Ibuprofen in the receiving phas&) (S)-ibuprofen in the feed phase, the SLM. @) L-Phenylalanine in the receiving phase) (-phenylalanine

(m) (R)-ibuprofen in the receiving phas&) (R)-ibuprofen in the feed phase. i the feed phase,l) Dp-phenylalanine in the receiving phaseg)(

The feed phase consisted of Mcllvaine buffer (oH 6.3) containing 10 MM 5_phenylalanine in the feed phase. The feed phase consisted of Mcllvaine

racemic ibuprofen and 50 vol % ethanol. The SLM encapsulated 5 mg/mL pyffer (pH 6.3) containing 10 mM racemic phenylalanine and 40 vol %

CRL complex. The receiving phase consisted of Mcllvaine buffer (pH 6.3) ethanol. The SLM encapsulated 5 mg/mtchymotrypsin complex. The

containing 8 mg/mL native PPL. Dioleytglutamate ribitol was used as  receiving phase consisted of Mcllvaine buffer (pH 6.3) containing 0.5 mg/

the surfactant for the surfactaritpase complex. mL a-chymotrypsin complex. The-chymotrypsin complex was prepared
with the same surfactant employed for the surfactdipase formulation.

of (§- and R)-ibuprofen through the SLM. Indeed, the lipase CRL

has been reported to be a useful biocatalyst for the enantioselective In conclusion, the SLM encapsulating the surfactaerizyme
esterification reaction of§-ibuprofené The effect of differentkinds ~ complex enabled highly enantioselective separation of racemic
of lipase on the enantioselective transport 8f-ipuprofen was ibuprofen and phenylalanine. It can be envisioned that the arrange-
examined. In these results, the maximum ee (91%) was obtainedment of appropriate enzymes in the SLM system will allow
when the surfactartCRL complex was used in the SLM. The enantioselective separations of various useful organic compounds.
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